Dear Family,

This week your student is learning about graphs and equations that can represent proportional relationships.

One way to represent a proportional relationship is with a graph. The graph will be a straight line that goes through the origin, or the point $(0,0)$.
Another way is with an equation that tells you how many x you have for every one y. The equation for the proportional relationship at the right is $y=8 x$.

Your student will solve problems like the one below.

The table compares the number of people who ride a rollercoaster to the number of rollercoaster cars they fill. Is this a proportional relationship?

Cars Filled (x)	3	5	6	8
People (y)	18	30	36	48

> ONE WAY to recognize a proportional relationship is with a graph.
Plot the pairs of values as ordered pairs and connect the points. The graph is a straight line that passes through $(0,0)$, so the relationship is proportional.
> ANOTHER WAY to recognize a proportional relationship is to check if the ratios are equivalent.

The ratios $3: 18,5: 30,6: 36$, and $8: 48$ are all equivalent. In each case, you can multiply the first quantity by 6 to get the second quantity.

Both ways show that the relationship is proportional.

Activity Thinking About Proportional Relationships Around You

> Do this activity together to investigate proportional relationships in the real world.
Have you ever heard or seen a thunderstorm approaching and wondered how far away it was? You can figure this out!
After you see a flash of lightning, count the number of seconds until you hear the next rumble of thunder. For every 5 seconds you count, the storm is 1 mile away. You can multiply the number of
 seconds by $\frac{1}{5}$ to find how many miles away the storm is. That means the constant of proportionality for the relationship between time and distance is $\frac{1}{5}$.

What are other situations around you where one quantity is always a multiple of another quantity?

